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ABSTRACT 

Using the method of 3D optoacoustic tomography, we studied changes in tissues of the whole body of nude mice as the 
changes manifested themselves from live to postmortem. The studies provided the necessary baseline for optoacoustic 
imaging of necrotizing tissue, acute and chronic hypoxia, and reperfusion.  They also establish a new optoacoustic model 
of early postmortem conditions of the whole mouse body.  Animals were scanned in a 37oC water bath using a three-
dimensional optoacoustic tomography system previously shown to provide high contrast maps of vasculature and organs 
based on changes in the optical absorbance. The scans were performed right before, 5 minutes after, 2 hours and 1 day 
after a lethal injection of KCl. The near-infrared laser wavelength of 765 nm was used to evaluate physiological features 
of postmortem changes. Our data showed that optoacoustic imaging is well suited for visualization of both live and 
postmortem tissues. The images revealed changes of optical properties in mouse organs and tissues. Specifically, we 
observed improvements in contrast of the vascular network and organs after the death of the animal. We associated these 
with reduced optical scattering, loss of motion artifacts, and blood coagulation.   

 

Keywords: photoacoustic thermoacoustic tomography, postmortem tissue changes, 3D tomography, nude mice, rigor 
mortis, blood coagulation, deoxygenation.   

 

1. INTRODUCTION 
Postmortem studies have a broad range of fields associated with it such as pathophysiological stages such as global 
changes of tissue in hypoxia and necrosis.1,2 It is important for forensic medicine, thermal therapy, and pathological 
anatomy. In the case of thermal therapy, it would be good to know when the targeted tissue is destroyed and how well 
the non-targeted tissue fair during the treatment. Another scenario is tissue hypoxia leading to necrosis like during frost 
bite when the blood circulation is restricted over a long span of time possibly killing the tissue.  

 It is known that the body undergoes various phases of changes during the time of necrosis in terms of physiology, 
chemistry, and biology of a specimen.3,4,5,6  Figure 1 shows many of the various transitions that the cells, tissues, and 
organs occur once the organism is dead. Physical changes happen rather quickly from minutes to days and consist of 
pallor (paleness), algor (temperature change), hypostasis (gravitation), etc. Also closely related to the physical changes 
are chemical changes which tend to also occur rather quickly ranging from minutes to weeks manifested in rigor mortis 
(cadaverous rigidity), blood coagulation, autolysis, etc. Biological changes like of putrefaction and further cadaverous 
decomposition related to bacteria and insects happen within days to months.7,8,9,10 Early changes associated with death 
include the loss of movement such as the fall of blood pressure and cessation of circulation of blood. Also the physical 
characteristics of the body such as temperature and rigidity happen in a span of a day. Within the first day following the 
death of an organism, changes to acoustic impedance and speed of sound are onset due to rigor mortis and blood 
coagulation in addition to deoxygenation which all can be detected with optoacoustic (OA) imaging.11 Figure 2 presents 
some of the processes that lead to rigor mortis and blood coagulation due to the deoxygenation of the organism and 
subsequent creation of an acidic environment. This in turn causes contraction of the muscle fibers for rigor mortis and 
the release of thrombokinases when blood coagulation occurs. Upon rigor mortis, a dead organism previously flaccid for 
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within a day there is a general increase in contrast associated with blood rich tissues and organs. It is probably related 
from a combination of optical changes from blood coagulation and deoxygenated blood as well as acoustic changes from 
blood coagulation and rigor mortis. Concerning deoxygenated blood though, there is a need to add a scan with a 
separated laser wavelength preferably something like 1064nm where oxygenated blood absorbs more as opposed to 
deoxygenated blood seen at 764nm. Also, it would be beneficial to continue scans past a day after an animal’s death to 
see at which point OA imaging starts degrading and its correlation to changes in cadaverous tissue at that time. If 
optoacoustic imaging can monitor and track all the various blood and tissue related changes in the body it might be used 
to help estimate the time of death. 
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