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ABSTRACT 
 
We developed an optoacoustic biosensor intended for the detection of bloodborne microorganisms using 
immunoaffinity reactions of antibody-coupled gold nanorods as contrast agents specifically targeted to the antigen 
of interest. Optoacoustic responses generated by the samples are detected using a wide band ultrasonic transducer. 
The sensitivity of the technique has been assessed by determining minimally detectable optical density which 
corresponds to the minimum detectable concentration of the target viral surface antigens. Both ionic solutions and 
gold nanorods served as the contrast agent generating the optoacoustic response. The sensitivity of Nano-LISA is at 
least OD=10-6 which allows reliable detection of 1 pg/ml (depending on the commercial antibodies that are used). 
Adequate detection sensitivity, as well as lack of non-specific cross-reaction between antigens favors NanoLISA as 
a viable technology for biosensor development. 
 
Key words: NanoLISA, gold nanoparticle conjugates, optoacoustic detection, specific binding, contrast agents.  

INTRODUCTION 
 
The threat of contaminants such as bacterial, viral, and chemical toxins has long been recognized as a public health 
hazard. For instance, infectious keratitis is a major cause of visual disability and blindness; infections due to herpes 
simplex virus (HSV) are some of the most common and difficult to diagnose. In order to treat this condition 
effectively, rapid identification of the responsible infectious agent must occur to deliver specific and timely 
treatment. The current diagnostic standard involves microbiological culturing and requires several days; improper 
management can lead to marked loss of vision1. Additionally, the cultures’ yields are often too low for a conclusive 
diagnosis and treatment specificity has to be sacrificed. 
 
Sensitive methods exist for detecting most pathogens of concern, utilizing a number of technologies, e.g. isolation of 
target nucleic acids (with PCR amplification if necessary2,3) or immunological-based ELISA or affinity assays4,5. 
These tests form the foundation of a variety of clinical microbiological assays. Our work on NanoLISA will build on 
this foundation by developing a new technology utilizing pulsed radiation optoacoustic spectroscopy for the 
detection of immunoaffinity complexes6-9. The advantage of optoacoustic detection is that it offers greater sensitivity 
compared to existing methodologies, such as linked colorimetric reactions or fluorescence. Furthermore, it is the 
only viable method of detection when studying heavily light-scattering samples. 
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The principle of optoacoustic detection relies on the occurrence of thermal confinement which happens when the 
laser pulse duration is small compared to the transit time of sound through the penetration depth of the light. In this 
case, instantaneous heating of the medium can be assumed. Since the density of the medium cannot change 
substantially during laser pulse action, a stress field is created as a result of the inhomogeneous temperature field, 
and an acoustic signal is generated. As light absorption dictates the amount of energy absorbed in the sample, the 
resulting pressure wave will vary in amplitude depending on the analyte's optical properties. 
 
Published results have shown that gold nanorods (GNR), being the size of a cluster of a few large protein molecules 
(roughly 15x50 nm), can absorb light about one thousand times more strongly than an equivalent volume of an 
organic dye10,11. The optoacoustic efficiency of these contrast agents is also due to the localized superheating of the 
particles. As they are unable to release energy in the form of photoluminescence, superheating results in evaporation 
of a nanolayer of surrounding water10,12, which produces acoustic waves up to an order of magnitude stronger than 
that from a homogeneously absorbing solution with equal average absorption coefficient13. At TomoWave 
Laboratories, we manufacture particles14 with an extinction coefficient around 4×109 M-1cm-1. Recent studies 
demonstrated an optoacoustic limit of detection of 107 particles per ml for gold nanorods15,16. This compares very 
favorably to fluorescence detection, where the practical detection limit with commercial instrumentation is ~10-11 M 
of highly fluorescent fluorophores (equivalent to approximately 109 molecules/ml)17. We have shown in a breast 
cancer cell culture that gold NPs could be effectively conjugated to antibodies raised against various protein 
receptors expressed in high concentration in malignant breast tumors18. Such conjugation is based on a very strong 
affinity of molecular sulfur atoms to the gold surface, allowing chemical (covalent) bonding between the gold and 
the ligand. Additionally, we have shown those covalently conjugated gold nanorods to be stable for hours in blood, 
thereby demonstrating their stability in situ18. 

EXPERIMENTAL 

GNR Fabrication 
 
Presented below are the details of our GNR fabrication protocol adapted from previously reported methodology19,20. 
The base procedure is tailored to the needs of the specific experiments presented in this paper. It allows high-yield 
fabrication of a narrow size distribution of rods with a 755 nm plasmon resonance. The details of the procedure have 
been published elsewhere14,18  and only the generalities of the method will be summarized. A gold seed solution is 
first prepared by mixing solutions of gold salts, surfactant (CTAB) and a strong reducing agent (NaBH4). Seeds 
about 2 nm in diameter start to form immediately after mixing, and the solution is usually used within 2-4 hours. 
Subsequently, a growth solution is made by mixing the surfactant (CTAB), gold salt, and silver nitrate solutions in 
the order presented. Ascorbic acid is added to the resulting brown-yellow solution which immediately turns 
colorless, indicating a change in the oxidation state of the gold ions present. Then, an aliquot of seed solution is 
added to the growth solution, the mixture is gently mixed by inversion and the reaction is brought to completion 
over 24 hours in thermostatic conditions at 30°C. 
 
Before covalent binding with polyethylene glycol (PEG), or conjugation with a monoclonal antibody (mAb), the 
GNR were centrifuged at low speed (4000 rpm, 10 min) for separation (and subsequent removal) of other aggregates 
(platelets, stars). The pellet was removed and for the next steps, only the supernatant fraction was used. For 
Pegylation18,21 the GNR solution was centrifuged at 14000 g for 10 minutes, the supernatant was removed, and the 
pellet was resuspended in deionized (DI) water to reduce CTAB concentration to 0.01 M. Then, 0.1 ml of 2 mM 
potassium carbonate (K2CO3) was added to 1 ml of aqueous GNR solution and 0.1 ml of 0.1 mM mPEG-Thiol-5000 
(Laysan Bio Inc., Arab, AL). The resulting mixture was kept on a rocking platform at room temperature overnight. 
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Following microscopy analysis, the slides were interrogated optoacoustically. The slide was deposited, GNR down, 
onto the top delay line of the detector: about 150 µl of deionized water was first deposited on the detector and used 
as acoustic couplant. The same laser parameters as in the ionic solutions experiment were used, and the traces were 
analyzed in a similar fashion (i.e. removal of sloping offset through subtraction of blank data). Two signals, 
corresponding to two areas of the sample plate, are shown in the graph below (Fig. 5). Since the coating process 
isn’t controlled at this time, the GNR density on the surface varies and the signal therefore varies accordingly (here 
from about 0.8 to 1.2 mV). Analysis of the signal present in the flat portion of the baseline just before the initial rise 
shows a noise figure on the order of 85 µVRMS. Both traces show an average amplitude of 1 mV, so we can conclude 
that a density of 105 GNR per mm2 yields a signal-to-noise ratio of about 10, and correspondingly a noise equivalent 
power of 104 GNR per mm2. 

 
Figure 5. Optoacoustic signals collected from illumination of GNR adsorbed onto an acrylic substrate. Blank scans were 

subtracted in order to straighten the baseline, unfortunately also increasing experimental noise. 

 

CONCLUSIONS 
 
We have successfully developed an optoacoustic biosensor for the detection of antibody-coupled gold nanorods as a 
contrast agent. Optoacoustic responses generated by the samples are detected in forward mode using a wide band 
ultrasonic transducer. The sensitivity of the technique has been determined: Both ionic solutions and gold nanorods 
served as the contrast agent generating the optoacoustic response. The sensitivity of Nano-LISA is at least OD=10-6 
which allows reliable detection of GNR solutions of concentration around 2pM. By comparison, the noise equivalent 
power of standard ELISA detection is on the order of 10 pM. When interrogating samples made of GNR adsorbed 
on acrylic plates, the noise equivalent power is determined to be about 104 GNR per mm2. Through further 
improvements aimed at increasing the sensitivity of the method, we believe NanoLISA will prove to be a viable 
alternative to ELISA as it will yield a faster treatment of biological samples without the need for increasing sample 
concentration through lengthy viral or bacterial cultures.  
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