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Abstract—Optoacoustic tomography (OAT) is a hybrid imaging
modality that combines the advantages of optical and ultrasound
imaging. Most existing reconstruction algorithms for OAT as-
sume that the ultrasound transducers employed to record the
measurement data are point-like. When transducers with large
detecting areas and/or compact measurement geometries are
utilized, this assumption can result in conspicuous image blurring
and distortions in the reconstructed images. In this work, a new
OAT imaging model that incorporates the spatial and temporal
responses of an ultrasound transducer is introduced. A discrete
form of the imaging model is implemented and its numerical prop-
erties are investigated. We demonstrate that use of the imaging
model in an iterative reconstruction method can improve the
spatial resolution of the optoacoustic images as compared to those
reconstructed assuming point-like ultrasound transducers.

Index Terms—Optoacoustic tomography (OAT), photoacoustic
tomography (PCT), thermoacoustic tomography.

I. INTRODUCTION

O PTOACOUSTIC tomography (OAT), also known as
photoacoustic computed tomography (PCT), is a rapidly

emerging imaging modality that has great potential for a wide
range of biomedical imaging applications [1], [2]. OAT is a
hybrid imaging method that exploits the high optical con-
trast of blood-rich structures and the high spatial resolution
of ultrasonic imaging. An image reconstruction algorithm is
utilized in OAT to form an estimate of an object’s spatially
variant absorbed optical energy density from measurements
of pressure wavefields that are induced via the thermoacoustic
effect [1]–[3].

A variety of analytical [4]–[7] and iterative [8]–[11] OAT
image reconstruction algorithms have been developed. Many
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of these algorithms are based on a spherical Radon transform
imaging model and assume that point-like ultrasonic trans-
ducers are employed for data-acquisition. This assumption is
appropriate when the size of the transducer’s detecting surface
is sufficiently small and/or the object-to-transducer distance
is sufficiently large. However, the use of small transducers
and/or large scanning distances is undesirable because the
signal-to-noise ratio of the recorded optoacoustic signals will
be degraded [12]. When the characteristics of the transducer
are not accounted for in the image reconstruction algorithm, the
spatial resolution of the resulting images can be significantly
degraded and image distortions can be present.

An ultrasonic transducer in receive-mode is characterized
by its acousto-electric impulse response and spatial impulse
response [13], [14]. Their effects on the spatial resolution of
the reconstructed images in OAT have been studied previously
[15]–[18]. The explicit nature of the spatial resolution degrada-
tion depends on the measurement geometry, but it is generally
spatially variant and, therefore, not modeled as a linear shift-in-
variant system. Several data-space deconvolution procedures
have been proposed [7], [19] for mitigating the effects of the
transducer response on the OAT measurement data. A discrete
imaging model that took account of the transducer properties
was proposed in the [19]. However, specific details about how
the object and spatial impulse response were not provided. It
is worth noting that several groups have proposed alternative
ultrasound transducer technologies to circumvent the need to
numerically compensate for transducer effects in the recon-
struction algorithm. For example, virtual point detectors have
been investigated [12], [20], [21]. Integrating ultrasound detec-
tors [22], [23] are also being actively explored. Despite these
efforts, the majority of current OAT implementations utilize
conventional piezoelectric ultrasonic transducer technologies.
The use of conventional ultrasound transducers also facilitates
hybrid ultrasound-OAT imaging in which the same transducer
is utilized for both the traditional ultrasound imaging and for
the OAT [24]–[27].

In this work, a general OAT imaging model that incorporates
the physical response of an ultrasound transducer is intro-
duced and investigated. The imaging model is presented in
its continuous-to-discrete and discrete-to-discrete forms. Our
primary focus is on the discrete-to-discrete model and its
application to iterative image reconstruction. By use of com-
puter-simulated and experimental OAT measurement data, we
demonstrate that use of the new imaging model in an iterative
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Fig. 1. Schematic of a general OAT imaging geometry.

reconstruction method can improve the spatial resolution of
the reconstructed images as compared to those reconstructed
assuming point-like ultrasound transducers. The singular value
decomposition of the imaging model is computed to inves-
tigate how incorporation of the transducer responses in the
imaging model will affect the numerical stability of the image
reconstruction problem.

The remainder of the paper is organized as follows. In Sec-
tion II we briefly review a canonical OAT imaging model in its
continuous form and describe the impulse response method that
will be employed to numerically model the ultrasound trans-
ducer response. By use of the impulse response method, contin-
uous-to-discrete and discrete-to-discrete OAT imaging models
that incorporate the acousto-electric and OA spatial impulse
responses of a nonideal ultrasound transducer are established
in Section III. Numerical studies that involve computer-simu-
lated and experimental OAT measurement data are described
in Section IV, in which an iterative image reconstruction al-
gorithm is utilized with the new discrete-to-discrete imaging
model. In Section V, we compare the spatial resolution of the
reconstructed images with those reconstructed assuming point-
like ultrasound transducers. The paper concludes with a sum-
mary in Section VI.

II. BACKGROUND

Below we provide a brief review of the salient imaging
physics and describe a conventional OAT imaging model. The
reader is referred to [1], [2], [28], and [29] for comprehensive
reviews of OAT.

A. Basic Principles of OAT

A schematic of a general OAT imaging geometry is shown in
Fig. 1. A short laser pulse is employed to irradiate an object and
the thermoacoustic effect results in the generation of a pressure
wavefield , where . The radiated pressure wave-
field is measured by use of ultrasonic transducers located on
a measurement aperture that partially or completely
surrounds the object. The coordinate will denote a par-
ticular transducer location.

When the temporal width of the exciting laser pulse is
sufficiently short, the generation of photoacoustic wavefields
in a lossless medium is described by the photoacoustic wave

equation [29]

(1)

where is the 3-D Laplacian operator, describes the nor-
malized temporal profile of the illuminating pulse, and ,
and denote the thermal coefficient of volume expansion,
speed-of-sound, and the specific heat capacity of the medium
at constant pressure, respectively. The absorbed optical energy
density , which represents the sought after quantity in OAT,
is determined by the optical absorption properties of the object
as well as variations in the fluence of the illuminating optical
radiation within the tissue.

When the object possesses homogeneous acoustic properties
that match those of a background medium, acoustic attenuation
is neglected, and the assumption of acoustic stress confinement
is justified [28] ( where is the Dirac delta func-
tion), the pressure wavefield recorded by use of an ideal
point-detector at location can be expressed [28] as a solution
to (1) as

(2)

where

(3)

Here represents the OAT imaging operator viewed as a
continuous-to-continuous mapping, denotes the (constant)
speed-of-sound in the object and background medium, and
denotes the object’s support volume. Note that
represents the point response function [30] of the imaging
system when perfect point-like ultrasound transducers are
assumed.

Equation (2) represents an idealized imaging model for OAT
in its continuous form. The associated image reconstruction
problem is to determine an estimate of from knowledge
of with . A variety of analytical reconstruction
algorithms have been developed for inversion of (2) [5], [6],
[31]. However, because they neglect the response characteris-
tics of the transducers, as well as finite-sampling effects, they
can sometimes produce significant image blurring and distor-
tions in the reconstructed images. In Section III, we describe
generalized OAT imaging model that explicitly addresses these
issues and facilitates accurate iterative image reconstruction.

B. Impulse Response Method for Characterizing Transducer
Behavior

The impulse response method [14], [32], [33] that we will
utilize to incorporate the response of an ultrasound transducer in
our imaging models is reviewed briefly in this section. It treats
the ultrasound transducer as a linear acoustic system, and can
predict the voltage signal produced by a transducer in response
to acoustic pressure present on its surface.
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By use of the impulse response method, the voltage signal
generated by a transducer of active area cen-

tered at can be expressed as [14]

(4)

where is the acousto-electric impulse response (EIR,
V/Pa), and denotes a 1-D temporal convolution. For a point
acoustic source located at , it was demonstrated [14], [34] that
the surface integral in (4) can be expressed in the form of the
1-D temporal convolution

(5)

where is the optoacoustic (OA) spatial impulse re-
sponse (SIR). Thus, the response of an ultrasound transducer in
receive-mode can be modeled by two independent components,
namely, the EIR and the SIR [13], [32], [33]. The EIR models
the electrical response of the transducer while the SIR accounts
for the averaging effect over the transducer’s active area. Note
that the SIR describes the ansiotropic detection sensitivity of the
transducer that arises from its finite detecting surface [35].

The voltage signal produce by an ultrasonic transducer cen-
tered at location that arises from a photoacoustic point emitter
at location can be expressed as

(6)

As described by (3), represents the photoacoustic
wavefield that is produced by a point absorber at location at
time and recorded by an ideal point-like transducer at
location and time .

III. DISCRETE OAT IMAGING MODELS THAT INCORPORATE

TRANSDUCER RESPONSE

In practice, is discretized temporally and determined
only at a finite number of receiver locations . The vector

will represent a lexicographically ordered representation of
the sampled voltage data, where the dimension is defined by
the product of the number of temporal samples acquired at
each transducer location and the number of transducer locations

. We will use to denote the th element of vector .

A. Continuous-to-Discrete Imaging Model

An OAT imaging system is appropriately described by
a continuous-to-discrete (C-D) imaging operator that
maps to the recorded data . The operator can
be interpreted as a discretization operator acting on a
continuous-to-continuous mapping [30]

(7)

The operator characterizes the temporal and spatial sam-
pling characteristics of the ultrasonic transducer and is defined
as

(8)

where is the index that specifies the th
transducer location on the measurement aperture and

is the index of the time sample. The func-
tions and characterize, as described below, the
spatial and temporal sampling apertures of the transducer.

The temporal sampling aperture is related to the EIR
as

(9)

where is the temporal sampling interval. If the transducer
surface is assumed flat, so no reradiation from scattering and
reflection take place, the spatial sampling aperture can be ex-
pressed as

(10)

where denotes the active area of the th transducer surface.
It can be shown [13] that the surface integral in (8) can be ex-
pressed in terms of the SIR as

(11)

On substitution from (11) into (8), a C-D imaging model that
accounts for the transducer response can be expressed as

(12)

with

(13)

In the case of an ideal point-like transducer, ,
, and (8) reduces to

(14)

where is specified by (2).

B. Discrete-to-Discrete Imaging Model

In order to utilize conventional iterative image reconstruc-
tion algorithms, a discrete-to-discrete (D-D) imaging model,
i.e., system matrix, is required. In this section, we describe a
D-D imaging model that is obtained as an approximation of the
C-D imaging model in (12).
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To derive a D-D imaging model from (12), a finite-dimen-
sional approximate representation of is required. A gen-
eral linear form for this approximation is given by

(15)

where the subscript indicates that is an approximation
of is the th component of the coefficient vector ,
and are expansion functions. In this work, uniform
spherical expansion functions [36] will be utilized that are de-
fined as

(16)

where specifies the coordinate of the th
grid point of a uniform Cartesian lattice and is the half spacing
between lattice points. Because the photoacoustic wavefield
produced by a uniform spherical absorber can be calculated
analytically [37], [38], defining the expansion functions in
this way will facilitate construction of the system matrix. The
coefficient vector will be defined as

(17)

where and are the volumes of a cubic voxel of di-
mension and , respectively.

To establish a D-D imaging model, we will also require a fi-
nite-dimensional representation of the SIR that, for a fixed trans-
ducer location , can be viewed as a function of . By use of
the expansion functions , an approximate representation
of the SIR will be constructed as

(18)

with

(19)

where is a set of expansion functions. Substitution
of (15) and (18) into (12) and (13), respectively, yields a D-D
imaging model

(20)

where the system matrix is of dimension whose ele-
ments are given by

(21)

with

(22)

and . Physically, (22) describes the pres-
sure wavefield produced in the case where the absorbed energy
density corresponds to the expansion function . Because

is a uniform sphere, the resulting pressure wavefield pos-
sesses an “N”-shaped temporal profile [37], [38].

IV. DESCRIPTIONS OF NUMERICAL STUDIES

Numerical studies that employed computer-simulated and
experimental OAT measurement data were conducted, as
described below, to investigate the use of the proposed D-D
imaging model for image reconstruction.

A. Implementation of the System Matrix

The EIR is determined by the physical properties of the ul-
trasonic transducer and is usually determined by experiment. In
this study, we employed a specific EIR that was measured as
described in [39]. A variety of SIR models have been proposed
[13], [32], [33] and utilized in studies of OAT [14], [34]. In our
numerical studies, we adopted the SIR model described in [14]
that, for a square transducer of dimension , is specified in (23)
shown at the bottom of the page, with

(24a)

(24b)

where and were functions of and . As indicated in
Fig. 2, for each pair of locations and , we defined a local co-
ordinate system whose origin was located at and -axis

(23)
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Fig. 2. Illustration of the dependence of two incident angles � (elevation) and
� (azimuth) on the locations of the optoacoustic source � and the transducer
� . The transducer possesses a flat square detecting surface.

was normal to the transducer plane. The direction of the incident
wavefield was defined as

(25)

Its projection on the transducer plane was chosen as the
-axis. The angle was the angle between and -axis

and , where and were the two angles
between -axis and the transducer’s two edges. In our im-
plementation we employed in (21), and
therefore .

To obtain the system matrix , in principle, we need to im-
plement the two continuous convolutions in (21). However, only
discrete samples of are available in practice. Also, the
quantity is broadband in
temporal frequency space, which may result in strong aliasing
if direct temporal sampling was applied. Consequently, an anti-
aliasing filter was applied to and the first convolution
operation in (21) was approximated by a discrete convolution as

(26)

where is a discrete approximation of .
Additional details regarding implementation of the system ma-
trix are provided in the Appendix.

To investigate the effects of EIR and SIR seperately, in the
following discussion, we denote the comprehensive system ma-
trix by while , and represent system matrices with

, and
, respectively.

B. Eigenanalysis of the System Matrix

To investigate how incorporation of the transducer SIR in the
imaging model will affect the numerical stability of the image
reconstruction problem, we computed the eigenspectrum of the
Hessian matrix . We considered an imaging geometry
consisting of 90 square ultrasonic transducers of dimension
that were uniformly distributed on a ring of radius . This ge-
ometry is depicted in in Fig. 3(a), and was utilized to image

Fig. 3. (a) The scanning geometry employed in the computer-simulation
studies. (b) The central horizonal slice through the numerical phantom.

thin 3-D objects in the studies described below. We numerically
computed the eigenvalues of the Hessian for different
transducer dimensions mm and scanning radii

mm and mm, respectively. For comparison,
we also computed the eigenvalues of the Hessian for the ideal
case when , whose system matrix
and Hessian are denoted by and , respectively.

C. Computer-Simulation Studies and Reconstruction
Algorithm

Computer-Simulated Measurement Data: The 3-D numer-
ical phantom shown in Fig. 3 was taken to represent the object
function . Its support volume was 17.92 17.92 0.07
mm and was represented by 512 512 2 nonoverlapping
spherical voxels of radii 0.0175 mm. From this discrete rep-
resentation of , the noiseless data were calculated
numerically by use of (20) at equally spaced trans-
ducer locations over the interval on the 2D measurement
geometry shown in Fig. 3(a). The scanning radius was 25 mm.
At each transducer location, equally spaced temporal
values of the voltage signal over the interval [8, 25) s were
computed. Each transducer had a flat detecting area of dimen-
sion 4 4 mm and the speed of sound was described by a
constant value mm/ s. The pressure data were gen-
erated by use of whose was measured experimentally
[14], [39] and is displayed in Fig. 4.

Although the image reconstruction studies described below
will employ a different voxel size in the assumed object repre-
sentation than that employed to generate the measurement data,
it should be noted that these computer-simulation studies do not
comprehensively assess the impact of modeling errors associ-
ated with approximating a C-D imaging model with a D-D one.
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Fig. 4. The acousto-electrical impulse response of the ultrasonic transducer.

However, these computer-simulation studies do serve to demon-
strate the potential improvement in spatial resolution that can
be achieved by incorporation of the transducer response in the
imaging model. Also, as described below, these studies will as-
sess the statistical properties of images reconstructed by use of
a particular iterative reconstruction algorithm. Images recon-
structed from experimental data will corroborate the features
revealed by the computer-simulation studies and are discussed
later.

Noise Model: With consideration of stochastic measurement
noise, the detected voltage data can be described as

(27)

where is an additive noise vector. Here, the tilde indicates
a stochastic quantity. We focus on the SIR effect and thus
was generated by use of . The noise vector was treated as an
uncorrelated zero-mean Gaussian random vector with a standard
deviation chosen according to the rule

(28)

where denotes the maximum value of all components
of the noiseless . A total of 100 noisy versions of were
computed as realizations of this stochastic process.

Reconstruction Algorithm: From knowledge of the noise-
less and noisy simulated measurement data, images were recon-
structed by inverting the D-D imaging model in (20) by use of
a penalized least-squares (PLS) image reconstruction algorithm
[40]. Investigation of alternative reconstruction algorithms re-
mains an important topic for future work. The PLS objective
function is given by

(29)

where is a regularizing penalty term whose impact is con-
trolled by the regularization parameter . In this study we em-
ployed the quadratic smoothness penalty given by

(30)

where is the set of eight neighbors of the th voxel. The
system matrix was constructed according to (26). For the

noiseless pressure data generated by , we compared the recon-
structed images obtained by use of , and . We also
investigated the SIR effects in the noisy case where
by comparing the images reconstructed by use of and .

In all cases, the reconstruction algorithm for implementing
(29) was based on the Fletcher Reeves version of conjugate gra-
dient (CG) method [41]. We calculated the norm of the gra-
dient and terminated the iteration when it was below a prechosen
tolerance. We used the same tolerance in both reconstruction al-
gorithms. The impact of the choice of on the reconstructed im-
ages was studied by Monte Carlo simulations described in the
next subsection. The reconstructed object estimates were rep-
resented by a 256 256 1 grid of non-overlapping spherical
voxels of radius 0.035 mm.

D. Empirical Determination of Image Statistics and Resolution
Measures

As described above, for each choice of the regularization pa-
rameter , 100 noisy images were reconstructed for the cases
where the EIR effect was excluded and the system matrices
and were employed by the reconstruction algorithm. From
each collection of images, the empirical mean image and the
empirical estimate of the image variance map were computed
by

(31a)

(31b)

where is the number of noisy images we reconstructed,
is the reconstructed image from the th realization of noisy

data, and is the voxel index.
We computed the mean variance within a 90 90 voxel re-

gion indicated by the dashed box in Fig. 3(b). To quantify the
spatial resolution of the reconstructed image, we fitted the rising
edge of a prechosen structure in the empirical mean images to a
cumulative Gaussian function as [42]

(32)

where and are the true intensities on the two sides of the
boundary with is the true location of the boundary,
and is the Gauss error function with the standard de-
viation denoted by . The image resolution was characterized
by the full-width at half-maximum (FWHM) value of the fitted
error function [11] as . We computed the
spatial resolutions crossing the two edges marked by the arrows
“X” and “Y” in Fig. 3(b) that correspond to radial and tangent
directions, respectively. The radial and tangent directions are
relative to the measurement geometry that was a ring in 2-D or
a sphere in 3-D for this study. Repeating the process for different
choices of the regularization parameters ranging from 0 to 10
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Fig. 5. Scanning geometry employed in the experimental studies.

produced a collection of (variance, FWHM) pairs, which were
plotted to characterize the tradeoffs between spatial resolution
and noise levels in the reconstructed images.

E. Experimental Data

We applied the reconstruction algorithm utilizing the new
system matrix to experimental data obtained by use of an ex-
isting OAT imaging system [43], where the EIR was the same
as the one employed in the simulation studies shown in Fig. 4.
The measurement geometry is shown in Fig. 5. The to-be-im-
aged object consisted of a pair of crossing horse hairs with a
thickness of 200 m and a length of 90 mm mounted on a
custom made holder. The laser pulse was of wavelength 765
nm and was delivered by a bifurcated fiber bundle to illumi-
nate the bottom half of the object. Two light beams were ex-
panded to a diameter of 40 mm. A curved transducer array con-
sisting of 64 rectangular detecting elements were focused at 65
mm that approximately coincided with the intersection of the
hairs. Each transducer element had a flat detecting surface of
size 2 2 mm . The object was rotated about the -axis as
indicated in Fig. 5, and optoacoustic pressure measurements
were obtained at 72 uniformly-spaced views over a 360 in-
terval. The time samples were obtained at 1536 instances at a
sampling rate of 20 MHz. We made use of the pressure data
obtained by 33 transducers indexed from 31 to 64 shown in
Fig. 5 for the reconstruction. The region to-be-reconstructed
was of size 13.44 5.6 41.44 mm and was represented by
96 40 296 voxels. Each voxel was of diameter 0.14 mm.
We turned off the smoothness regularization term in (30), i.e.,

, since the noise level was very low in this data set.
For comparison, we reconstructed images by use of system ma-
trices , and also. The algorithms were terminated for all
imaging models after six iterations where the objective func-
tions reduced to the same level and the images became noisier
for more iterations. The reconstructed 3-D image data were vi-
sualized by computing maximum intensity projection images by
use of the Osirix software [44].

Fig. 6. Eigenspectra of the Hessian matrices for the new system matrix� , and
the system matrix assuming point-like transducer � for different transducer
sizes � � ���� �, and 4 mm. The scanning radius is (a) � � �� mm and (b)
� � �� mm.

V. NUMERICAL RESULTS

A. Intrisic Numerical Properties of

The eigenvalues of for the cases of transducer dimen-
sions and 4 mm were numerically computed and
plotted in Fig. 6. The eigenspectrum of , the Hessian
matrix assuming an ideal point-like transducer, was also com-
puted. Fig. 6(a) and (b) displays the eigenspectra corresponding
to cases where the radius of the scanning aperture was
mm and mm, respectively. These plots reveal that the
rate of decay of the eigenvalues of increases as the trans-
ducer size is increased. This confirms that the image recon-
struction problem becomes more ill-conditioned and is therefore
more sensitive to data inconsistencies as the transducer size is
increased. Similarly, by comparison of Fig. 6(a) and (b) we ob-
serve that the rate of decay of the eigenvalues of is slower
for the larger scanning aperture. This confirms that the ill-con-
ditioning of the reconstruction problem is generally less severe
for larger scanning apertures.

B. Results From Noiseless Simulation Data

The computer-simulated noiseless data were generated by use
of the system matrix , from which the images reconstructed
by use of and are shown in Fig. 7(a)–(d), respec-
tively. We set the regularization parameter for all cases.
Reconstruction algorithms were started from the same uniform
initial guess and terminated after 150 iterations when the
norms of the objective functions’ gradients were reduced by a
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Fig. 7. Images reconstructed from the noiseless data function � by use of
system matrices (a) � , (b) � , (c) � , and (d)�.

factor compared to their initial values. As expected, struc-
tures within images reconstructed by use of had uniformly
broadened boundaries while the peripheral structures within im-
ages reconstructed by use of had blurred boundaries along
the tangent direction. The images reconstructed by use of
combined both degradations. By use of the new system matrix

, the reconstructed images had improved spatial resolution.
Ignoring the EIR effect results in the loss of quantitative infor-
mation of the reconstructed images. Fig. 7(a) and (b) contain
negative values and are shown in a different gray scale from that
employed in Fig. 7(c) and (d). The profiles along the radial and
tangent directions, indicated by “X” and “Y” in the images in
Fig. 7(c) and (d) are shown in Fig. 8(a) and (b).

C. Results From Noisy Simulation Data

We simulated the noisy data by use of the system matrix
that assumed . Fig. 9(a) and (b) display images
reconstructed from noisy simulation data by use of the system
matrices and with . The reconstruction algorithms
that employed and were terminated at 45 and 54 itera-
tions, respectively, which was when the residues (gradients of
the objective functions) were reduced to 0.3% of their initial
values. As was observed in the case of noiseless data, struc-
tures within the image reconstructed by use of [Fig. 9(a)]
had blurred boundaries, due to the fact that the transducer SIR
was not modeled in the system matrix . On the other hand,
the spatial resolution of the images reconstructed by use of
[Fig. 9(b)] appear to suffer much less degradation in spatial res-
olution. Additional images reconstructed by use of with reg-
ularization parameters and are shown in
Fig. 9(c) and (d), respectively. As expected, increasing re-
sulted in a decrease in noise level at the expense of spatial res-
olution. The root mean square errors of the reconstructed im-
ages from the object were calculated within the region of interest

Fig. 8. (a) Radial image profiles corresponding to the use of� (solid line) and
� (dashed line). The locations of the profiles are indicated by the “X”-arrows
in Fig. 7(c) and (d), respectively. (d) Tangent image profiles corresponding to
the use of� (solid line) and� (dashed line). The locations of the profiles are
indicated by the “Y”-arrows in Fig. 7(c) and (d), respectively.

Fig. 9. Images reconstructed from the noisy data function �� by use of (a)� �

� � �, (b)� � � � �, (c)� � � � ���, and (d)� � � � ���. The noisy data
were degraded only by the SIR.

marked by the dashed box in Fig. 3, which were 6.28, 7.35, 3.91,
and 5.07 corresponding to the Fig. 9(a)–(d), respectively. Radial
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Fig. 10. (a) Radial image profiles through the noisy images corresponding to
the use of� � � � � (solid line) and� � � � ��� (dashed line). The locations
of the profiles are indicated by the “X”-arrows in Fig. 9(a) and (c), respectively.
(b) Tangent profiles corresponding to the use of � � � � � (solid line) and
� � � � ��� (dashed line). The locations of the profiles are indicated by the
“Y”-arrows in Fig. 9(a) and (c), respectively.

and tangent profiles corresponding to the locations marked “X”
and “Y” in Fig. 9(a) and (c), are shown in Fig. 10.

The curves of the average variance within the specified re-
gion-of-interest versus tangential or radial resolution measure
for the reconstructed images are shown in Fig. 11. The same
scanning geometry and acquisition parameters were adopted as
described in Section IV-C except that we employed 90 trans-
ducers. The left-most point on each curve corresponds to .
They demonstrate the impact of the regularization parameter

on the tradeoff between the spatial resolution and variance
of the reconstructed images. As predicted by the eigenanalysis
of the Hessian matrices, for the reconstruction algo-
rithm that employes produces images with larger variances
than those produced by the algorithm employing . However,
the spatial resolution of the images produced by the algorithm
employing is superior to those produced by the algorithm
employing . When the value of is increased, within the
common resolution region of the plot, the curves corresponding
to were lower everywhere than the ones corresponding to

. This demonstrates that, when appropriate regularization is
employed, an algorithm employing can produce images with
lower noise levels at a matched resolution than can an algorithm
employing .

D. Results From Experimental Data

Fig. 12 from top to bottom displays reconstructed images of
the horse hair phantom corresponding to the planes

Fig. 11. Variance versus resolution curves corresponding to use of the system
matrices � and � .

Fig. 12. Slices through the 3-D images reconstucted from the experimental data
set. The slices are parallel to the �-�-� plane indicated in Fig. 5. The images,
from top to bottom, correspond to different locations along �-axis as: (a), (b)
� � ����� mm, (c), (d) � � ����� mm, (e), (f) � � ����� mm, and (g), (h)
� � ���� mm. The left column of images corresponds to the use of� while
the right column corresponds to the use of�.

mm, mm, mm, and mm.
The two columns correspond to the use of (left) and
(right), respectively, in the reconstruction algorithm. All images
were shown in the same display window for comparison. We did
not compare them with images reconstructed by use of be-
cause the EIR effect distorted the quantitative values and made
them uncomparable in the same grey scale. From Fig. 12(a),
(c), (e), and (g), we observed that the thickness of the recon-
structed horse hairs was broadened and the intensity was faded
for the parts further away from the center of measurement ge-
ometry. By use of system matrix (see the right column), the
structural information of the horse hairs on the peripheral part
was preserved. This is consistent with our observations in the
computer-simulation studies. Three dimensional rendered im-
ages are shown in Fig. 13. Fig. 13(a), corresponding to , only
provided faint structural information while Fig. 13(b) and (c),
corresponding to and , revealed better-defined structures.
Fig. 13(b) and (c) employed the same grey scale and display
window. These images corrorborate our assertion that compen-
sation for the transducer response in the imaging model can sig-
nificantly improve the spatial resolution characteristics of the
reconstructed image. It is likely that errors in the assumed speed
of sound and/or errors in the assumed location of the center of
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Fig. 13. Maximum intensity projection renderings of the experimental phantom image data reconstructed by use of (a)� , (b)� , and (c)�.

the scanning geometry limited the achievable spatial resolution
of the reconstructed images.

VI. CONCLUSION

Because they provide the opportunity for accurate image re-
construction from incomplete measurement data, iterative re-
construction algorithms for OAT are being developed actively.
Iterative reconstruction algorithms permit utilization of imaging
models that can accurately describe the measurement process.
Despite this, many of the reported OAT image reconstruction al-
gorithms neglect the response of the recording transducer, and
relatively little effort in the OAT literature has been devoted to-
wards developing and evaluating detailed imaging models.

In this work, we developed and evaluated an OAT imaging
model that incorporates the physical response of an ultrasound
transducer. This was accomplished by use of the impulse re-
sponse method, which is a well-known method for modeling ul-
trasound transducers using linear acoustics. The imaging model
was utilized in conjunction with an iterative algorithm to re-
construct images from computer-simulated and experimental
OAT measurement data. These studies confirmed that use of
the imaging model in the reconstruction algorithm could signifi-
cantly improve the spatial resolution of the reconstructed images
as compared to those reconstructed assuming a point-like ultra-
sound transducer. The proposed imaging model will alleviate
the need to utilize small transducers and/or large scanning radii
and may permit construction of more compact imaging systems.
Compensation for acoustic attenuation and heterogeneities in an
object’s speed of sound and density may be important in certain
applications of OAT. In principle, they can be incorporated into
the framework of this study. How to construct the system matrix
that accounts for more general acoustic properties of the media
remains a topic for future work.

APPENDIX

Below we provide additional information regarding the nu-
merical implementation the system matrix in (26) that was
employed in our studies.

As described above (26), an anti-aliasing filter was applied to
, which was implemented in the temporal frequency

domain as

(33)

where is the anti-aliasing filter, and is the
Fourier transform of

(34)

We defined the low-pass filter as

(35)

where and specified a continuous decaying window in
frequency space. The location of the window limits the spatial
resolution we can achieve in the reconstructed images. Since

, its frequency spectrum
can be calculated by

(36)

where

(37a)

(37b)

Because we chose in (19),
possessed a closed form given by (23). It can be

verified that can be calculated analytically as

(38)
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where . Also, has an analytical
form given by

(39)

where and

(40a)

(40b)

(40c)

(40d)

To obtain , we sampled in frequency
space at a rate of samples per Hertz, and applied the
inverse discrete Fourier transform

(41)

where, . The discrete convolution in (26) and the
inverse discrete Fourier transform in (41) were implemented by
use of the fast Fourier transform.

The implementation of the conjugate gradient algorithm re-
quires calculating (38) and (39) at

, and with once for
each iteration. To accelerate the computation, we developed par-
allel program by use of graphic processing unit (GPU). We cre-
ated threads with each for a pair of voxel , trans-
ducer location and temporal frequency component . By
use of multiple GPUs, thousands of threads can run simultane-
ously. This technique tremendously reduced our computational
time and made the iterative reconstruction for 3-D OAT feasible.
For this work, it took 12 s and 2.5 h per iteration respectively
for the simulation and the experimental studies by use of single
NVIDIA Tesla C1060 computing processor.
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